If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2-16x-8=0
a = -6; b = -16; c = -8;
Δ = b2-4ac
Δ = -162-4·(-6)·(-8)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8}{2*-6}=\frac{8}{-12} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8}{2*-6}=\frac{24}{-12} =-2 $
| –12=3(d+9) | | –12=3(d+9) | | –12=3(d+9) | | 1/3x−9=15 | | 6x+13=36 | | 6x+13=36 | | (12/x)=(-22/(x-5) | | 3*11x=4 | | F(-4)=7x+3 | | 6y^×=y+1 | | 4x3^7x=9x2^7x | | 4x3^7x=9x2^7x | | 4x3^7x=9x2^7x | | 2.77+x+3.00=3.00 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 8(x+1)=29 | | 60°+53°+x=180 | | 60°+53°+x=180 | | 60°+53°+x=180 | | 2.77+x+3.00=3.00 | | 60°+53°+x=180 | | 8(x+1)=29 | | 60°+53°+x=180 | | 8(x+1)=29 |